Joint Graduate Seminar on 7 Dec 2010

Network Models of Phage-Bacteria Coevolution

PhD. Student: Haokui ZHOU

Supervisor: Prof. Guoping ZHAO

Clinical Microbial Genomics Laboratory
Department of Microbiology
Prince of Wales Hospital
The Chinese University of Hong Kong

The question

Statistical, Nonlinear and Soft Matter Physics

PHYSICAL REVIEW E 74, 066105 (2006)

Network models of phage-bacteria coevolution

Martin Rosvall, Ian B. Dodd, Sandeep Krishna, and Kim Sneppen*
Niels Bohr Institute, Blegdamsvej 17, Dk 2100, Copenhagen, Denmark
(Received 25 September 2006; published 8 December 2006)

 How the interactions between bacteria, virulent phages, and temperate phages might affect the diversity of these groups

PART I Interactions between bacteria and phages

Phage-bacterial ecosystems

- Virulent phages
 - lytic life cycle
- Temperate phages
 - lytic life cycle
 - lysogenic life cycle
 - prophage
 - immunity to lytic infection

Horizontal transfer of genes

- Evolution of new phage strains
 - gain genes from other phages shared common hosts
 - infect new hosts
- Evolution of new bacteria strains
 - gain genes from phages or bacteria
 - resistant to previous phages

PART II Stochastic network models

Evolutionary dynamics of networks

- "The rules for adding or removing nodes and links use only the structural properties of the network at that time"
- Feedback and regulate according to a set of parameters which control the network topology, modularity or density.
- Emphasis on holistic properties of the system

Elements of the network models: basic concepts

Nodes

represent species (bacteria or phages)

Links

- represent interactions
- host-parasite relationships (virulent phage)
- prophage-encoded resistance (temperate phage)

Dynamics

- rules of network evolution
- speciation (duplication of nodes, increase the fitness)
- extinction (removal of nodes according to loads)
- horizontal transfer of genetic information

Elements of the network models: basic quantities

- "Trophic layer" of bacteria
 - number of different bacterial species/strains (N_B)
 - bacteria are independent
- Time steps of network evolution
 - bacteria speciation rate (t)
- Quantitative rules of the dynamic process
 - speciation rate
 - extinction rate

Model A

Model A

- At every time t, two types of events occur
 - bacteria speciation
 - select a random strain and duplicate it
 - $N_B(t)=N_B(t-1)+1$
 - bacteria extinction
 - strain was remove according with a probability
 - $P(i) = N_B/(N_o * N_o), i=1,2,...,N_B(t)$
 - random extinction associated with environmental loads common to all strains
 - N_0 represents the carrying capacity of the ecosystem

Model B

Model B

- Based on Model A
- Adding
 - $-N_{V}$ of virulent phage strains
 - links between phage and bacterial strains
- At every time t, two types of events occur
 - Bacterial speciation
 - duplicate with its original links, and remove a random link, if possible
 - Phage speciation
 - duplicate a number of phage strains (Poisson distribution with mean μ)
 - adding a link to a single bacterial strain (locally or randomly)
 - Bacterial extinction
 - common extinction rate: n/N_0^2 , with $n=\sum_{i=1}^{N_B}e^{-\beta b_i}$
 - number of links: β/N_0
 - Phage extinction
 - load of infections (link density): σ/N_0

Model C

speciation

extinction

speciation

Model C

- At every time t, two types of events occur
 - Bacterial speciation
 - duplicate with its original links, and remove a random link, if possible (priority to strong links)
 - Phage speciation
 - virulent
 - duplicate a number of phage strains (Poisson distribution with mean μ)
 - adding a link to a single bacterial strain (locally or randomly), or remove a link from temperate phage
 - temperate
 - similar to virulent except links manipulation
 - Bacterial extinction
 - common extinction rate
 - **strong** links (θ) and **week** links (σ)
 - Phage extinction
 - load of infections (link density)
 - same for virulent and temperate

PART III Results and conclusions

Dynamics of models

Parameters

- $-N_{o}=100$
- sets the scale for number of bacterial strains,
- $\mu = 2.5$
- number of phage duplications per bacterial duplication
- β=2.0, and σ=0.2
- the strong and weak loads

Dynamics of models

- Model A
 - N_B fluctuates around N_o
- Model B
 - fluctuates relatively more than for model A
 - reduce independence of N_B
 - positive feedback
- Model C
 - increase fluctuations
 - more virulent strains
 - more bacteria than no resistance

When try to model the natural ecosystems

- The fact
 - high diversity and coexistence of temperate and virulent phage strains in nature ecological systems
- The models
 - difficult to produce viable and diverse ecosystems where many different species and strategies coexist
 - winner-take-all" situation

Coexistence of temperate, virulent phage and bacteria

Model D

- similar to ModelC
- modify the speciation rate of phage
- a) proportional to diversity
- b) $\mu_V = 2\mu_T$
- c) $\mu_V = 3\mu_T$
- Collapse of virulent or temperate phage

The success of Model C

- "phage speciation rule was a major determinant of the viability of coexistence of temperate and virulent phages"
- succeeded where the speciation rate of each phage group is independent of its diversity

Conclusion

- "Diversity could be stably maintained in the model only if the probability of speciation was independent of the diversity"
- "could be achieved in real ecosystems if the speciation rate is primarily set by the availability of ecological niches"

Thanks for your attention:)